

Drinking Water Quality Management DWQMP – Annual Report

2022-2023

Whitsunday Regional Council

Service Provider No.: 501

Author: Kerrie Pearson Environmental & Laboratory Coordinator Date: 15 December 2023

TABLE OF CONTENTS

Gl	ossary	y of Terms	3
In	troduc	ction	4
1.	Ove	erview of Operations	5
2.	DW	/QMP Implementation	6
	2.1	Implementing the Risk Management Improvement Program	6
	2.2	The Monitoring Program	7
	2.3	Amendments made to the DWQMP	7
3.	Con	mpliance with Water Quality Criteria	7
	3.1	Chemical	7
	3.2	E. coli	7
	3.3	Fluoride	7
4.	Not	tifications to the Regulator	8
5.	Cus	stomer Complaints Related to Water Quality	8
	5.1	Suspected Illness	8
	5.2	Discoloured Water	8
	5.3	Taste and Odour	8
6.	DW	/QMP Review	9
ΑĮ	pendi	ix A – Summary of Compliance with Water Quality Criteria	10
Αı	pendi	ix B – Implementation of the DWQMP Risk Management Improvement Program	17

Glossary of Terms

ADWG 2011 Australian Drinking Water Guidelines (2011). Published by the National Health and

Medical Research Council of Australia

E. coli Escherichia coli, a bacterium which is considered to indicate the presence of faecal

contamination and therefore potential health risk

HACCP Hazard Analysis and Critical Control Points certification for protecting drinking water

quality

mg/L Milligrams per litre

NTU Nephelometric Turbidity Units

MPN/100mL Most probable number per 100 millilitres

CFU/100mL Colony forming units per 100 millilitres

< Less than

> Greater than

Date	Report	Author	Reviewed By	Authorised by COO
15/12/2023	Annual Report	Kerrie Pearson	Paul Sandbek	Troy Pettiford J. Paris

Introduction

This report documents the performance of Whitsunday Regional Council's drinking water service with respect to water quality and performance in implementing the actions detailed in the DWQMP as required under the *Water Supply (Safety and Reliability) Act 2008* (the Act).

The report assists the Regulator to determine whether the approved DWQMP and any approval conditions have been complied with and provides a mechanism for providers to report publicly on their performance in managing drinking water quality.

Whitsunday Regional Council is operating under an approved DWQMP to ensure consistent supply of safe quality drinking water in order to protect public health. This is done through proactive identification and minimisation of public health related risks associated with drinking water.

It has been prepared in accordance with the *Guideline for the preparation, review and audit of Drinking Water Quality Management Plans, Version* 3 published by the Department of Regional Development, Manufacturing and Water, Queensland, October 2022 accessible at www.business.qld.gov.au.

1. Overview of Operations

Water and wastewater is managed within Whitsunday Regional Council by a separate business unit "Whitsunday Water" since July 2015.

Whitsunday Water maintains and operates 4 water treatment plants, supplying water to a seasonally fluctuating population of over 35 000 people, including residential, commercial, tourism and industrial customers.

Scheme	Communities Served	Population served	Source	Treatment	Treatment Capacity, ML/day
Bowen	Bowen, Brisk Bay, Merinda	10400 (5200 connections)	Sub-surface / open water intake in the Proserpine River	Conventional Flocculation with lamella plate settling and Dual media filtration. Disinfected with Sodium Hypochlorite.	16.5 (Av 7.0)
Collinsville	Collinsville, Scottsville	1700 (1200 connections)	Bowen River Weir, from Eungella Dam (Sunwater)	Conventional Flocculation and filtration. Disinfected with Sodium Hypochlorite.	6 {Av 2.2)
Proserpine	Proserpine, Mt Julian (supplies Cannonvale/Airlie Beach)	4200 (2000 connections)	Aquifer bores, supplemented from Peter Faust Dam	Conventional Flocculation with Dual media filtration. Disinfected with Sodium Hypochlorite.	14 (Av 5.2)
Coastal	Cannonvale, Airlie Beach, Mt Julian, Jubilee Pocket	14600 (6500 connections)	Aquifer bores	Conventional Flocculation with Dual media filtration. Disinfected with Sodium Hypochlorite.	9.6 (Av 3.8)

Table 1- Drinking Water Supplies

Major changes in recent years include:

- Bulk supply pipeline replaced existing 225 bulk water supply pipeline from Proserpine WTP to Coastal WTP with a 559 diameter pipe; new pump station to pump through the new pipeline; redirect Bore 10 from Coastal to Proserpine WTP. Completed.
- Cannon Valley Reservoirs Constructed 2 new 12ML reservoirs; redirecting water from the new bulk supply pipeline to the new reservoirs only, with the rest of the network then being gravity fed from the Cannon Valley Reservoirs. The reservoirs construction has been completed but they are not yet online.
- Replacement of the existing 5 low lift pumps at the Bowen Water treatment Plant. Underway.
- New Proserpine River open water intake pump/structure for Bowen Water treatment Plant including replacement of the existing High lift pump station building switchboard to incorporate new pumps and open water tank. Design underway.
- Construction of additional raw water production bores to improve water reliability, water security, and to accommodate growth of the Coastal and Proserpine water catchments. Investigation and testing underway.
- Replacement of the existing pumps at the coastal water treatment plant to enable pumping to the new Cannon Valley reservoirs. Underway.
- Cannonvale water network augmentation project to construct various trunk water mains and interconnecting links to optimise the utilisation of the existing reservoirs and partition the network. Underway.

• Cannonvale reservoir reconfiguration to allow refurbishment, repair and reconfigure its inlet and outlet. This can only take place after the new Cannon Valley reservoirs are on-line.

These will be included in future amendments of the DWQMP.

2. DWQMP Implementation

Water quality has been ensured by the implementation of safeguards and barriers identified in the DWQMP. Water quality in all areas has been kept to high standards with the implementation of sampling regimes, maintenance schedules and hazard identifications highlighted in the DWQMP.

2.1 Implementing the Risk Management Improvement Program

Refer to Appendix B for a summary of progress in implementing each of the Improvement Program actions.

All risk management improvement programs outlined in the DWQMP are being or have been implemented or are part of an ongoing maintenance strategy.

Items in the Risk Management Improvement Plan (RMIP) that have been Updated include

- Bowen open water intake 2023 Civil works now at concept stage. Preliminary works commenced, works progressing. Low lift pumps in place and operational.
- Proserpine Turbidity Analysers install and commissioning completed standardisation across WIM alliance region.
- Collinsville water treatment plant Secondary control completed on each filter to enable plant shutdown
- Storage reservoir works
 - o Collinsville, Miller St completed.
 - Collinsville, Mt Devlin RPEQ certified inspection identified additional works to meet regulations & specs. Works tendered to replace roof, vermin proofing and repairs up to required specs. Completion by June 2024
 - o Bowen, 12ML Reroofing, stairs and roof access. Completion by June 2025
 - Bowen, 3ML Roof replacement, roof & stair access & leak detection and repair. Completion by June 2025
 - Cannonvale Structural inspection and subsequent repair, dependent on when Cannon Valley reservoirs are on-line. Completion by June 2026
 - Shute Harbour (Mt Roper) access fencing. Completion by June 2025
- Proserpine Bores Bore investigation underway drilling for testing bores midway through completion.
- Collinsville Solar Project Nearing completion. Solar Array installed, awaiting connection expected early 2024.
- Site security Working with Facilities on CCTV and Slide gates/boom gates
- Cybersecurity ongoing

2.2 The Monitoring Program

Operational monitoring and Verification monitoring programs have continued unchanged throughout the year.

2.3 Amendments made to the DWQMP

Version 3 of the DWQMP was approved in December 2021.

A further amendment (Version 3.1) was made in April 2022, which was rejected in November 2022 after a Show Cause Notice in September 2022.

A review of the DWQMP (new version 3.1) was conducted and submitted with an amendment application in October 2023. Outcome is pending.

The Approved DWQMP as at 30 June 2023 is Version 3, approved in December 2021.

3. Compliance with Water Quality Criteria

The water quality criteria mean health guideline values in the most current Australian Drinking Water Guidelines, as well as the standards in the Public Health Regulation 2005.

A summary of water quality characteristics for each scheme is contained in Appendix A.

3.1 Chemical

All samples taken during this financial year met the recommended health values in the Australian Drinking Water Guidelines.

There were 2 in-house Manganese values at Bowen that were above the aesthetic value of 0.1 mg/L. These were both the reticulated and treated sample from the same day, 24 August 2022. The in-house results did not correlate with the external results for August at below detection (<0.001 mg/L).

An in-house Aluminium value at Proserpine was above the aesthetic limit at 0.26 mg/L on 30 June 2023. The external samples from June 2023, with results of 0.091 and 0.14 mg/L for the reticulated and treated samples respectively, did not correlate with the in-house result.

Chlorate was detected again in Bowen Treated and Reticulated water in January and February 2023, respectively.

3.2 E. coli

There were no detections of E.coli for the 2022-23 financial year.

3.3 Fluoride

Fluoride is not added to water within the Whitsunday Regional Council area, so levels detected are natural background levels.

4. Notifications to the Regulator

The only notification made this year was involving a dirty water event at Collinsville over the weekend of 26 and 27 November 2022. Storm (electrical) events had disabled the Raw Water high Turbidity alarm. This allowed dirty water through the process into the Clear Water Storage (CWS) and may have been released to the reservoir. Reservoirs and the reticulation system were checked over the next few days with no indication that the dirty water had passed through to the reticulation system. All Turbidity results were below 2 NTU, all bacteriological results were <1 cfu/100mL. Until further actions can be completed the plant will not be run unmanned during the wet season. Other further actions include Dynamic dosing of raw water linked to turbidity, discussion with Sunwater about possibility of a turbidity meter at the Turkey nest and project plan for some installation works that have been delayed previously. The incident was closed in April 2023.

Refer to Incident DWI-501-22-09970.

Customer Complaints Related to Water Quality

Whitsunday Regional Council is required to report on the number of complaints, general details of complaints, and the responses undertaken.

Throughout the year the following complaints about water quality were received:

	Suspected Illness	Dirty water	Taste and odour	Total
Bowen	0	7	1	8
Coastal	0	1	3	4
Collinsville	0	0	0	0
Proserpine	0	1	0	1
Total	0	9	4	13

Table 2 – Complaints about water quality

5.1 Suspected Illness

There were no suspected illness complaints attributed to potable water.

5.2 Discoloured Water

The dirty water complaints in the Bowen area during the 2022-23 year were not related in either location, timing or source characteristics. For each instance the line was flushed to achieve clear water and no further action was required.

The dirty water complaints in the Coastal and Proserpine areas were, in each case, a localised issue and was flushed to achieve clear water. No further action was required.

5.3 Taste and Odour

The taste and odour complaints in the Bowen and Coastal areas were determined to be unsubstantiated and no further action was required other than flushing in some cases.

6. **DWQMP Review**

There was no official review of the DWQMP completed in the 2022-2023 year. A review is due 4 October 2023.

An amendment application, for version 3.1, was submitted in April 2022 and in September 2022 a Show Cause Notice was issued inviting Council to make submissions as to why it should not be directed to amend its approved DWQMP in a stated way. The submission was made by Council and the amendment application was not agreed to in November 2022. As such, the plan approved in December 2021, Version 3, is still the current version. Council sought input to ensure compliance with the regulatory requirements prior to submission of the review and amendment in October 2023.

Full details of the 2023 review will be included in the 2023-2024 report.

Appendix A – Summary of Compliance with Water Quality Criteria

The results from the verification monitoring program have been compared against the levels of the water quality criteria specified by the Regulator in the *Water Quality and Reporting Guideline for a Drinking Water Service*.

Verification monitoring was carried out as per the program stated in the DWQMP.

A summary of water quality characteristics for each scheme are contained in the following tables.

	erification monitoring	results - Bot	veri ocheme i	No. Samples	•								
	Parameter	Unit of Measure	LOR	to be collected from Approved Plan	Actual Total Samples Collected	No. Samples in which parameter was detected	ADWG Aesthetic (Health) Guideline	No. of samples exceeding water quality criteria	Minimum Result	Maximum Result	Average of Results	95th Percentile	Comment
	pH	mg/L	0.1	104	406	406	6.5-8.5	0	7.0	7.8	7.4	reicentile	Comment
	Turbidity	NTU	0.01	104	405	405	5	0	0.02	0.55	0.10		
	Conductivity	μS/cm	1		144	144			300	498	397		
	Colour	Pt/Co	1	104	406	289	15	0	0	6	0.9		
	Free chlorine residual	mg/L	0.1		405	405			0.25	3.73	1.77		
	Total chlorine residual Alkalinity	mg/L mg/L	0.1	104	96 143	96 143			0.5 45	4.1 105	2.10 84		
	Total hardness	mg/L	0.1	104	143	143	200	0	56	120	85		
	Iron	mg/L	0.01	104	406	393	0.3	0	0.0	0.04	0.017		
	Manganese	mg/L	0.001	104	406	391	0.1 (0.5)	2	0.000	0.139	0.005		
	Aluminium	mg/L	0.001	104	406	406	0.2	0	0.008	0.058	0.021		
	pH	mg/L	0.1	24	23	23	6.5-8.5	0	6.81	7.6	7.1	7.4	
	Turbidity Colour	NTU Pt/Co	1	24 24	23 23	0	5 15	0	<1 <1	<1 <1	<1 <1	<1 <1	
	Conductivity	μS/cm	5	24	23	23	13	0	340	520	425	499	
	Alkalinity	mg/L	5	24	23	23			72	97	82	97	
	Total hardness	mg/L	5	24	23	23	200	0	66	102	86	101	
	Total dissolved solids	mg/L	10	24	23	23		0	190	280	230	269	
	Chloride	mg/L	2	24	23	23	250	0	54	88	71.6	85.0	
	Sulphate Fluoride	mg/L mg/L	2 0.05	24 24	23 23	23 23	250 (500) (1.5)	0	11 0.08	17 0.12	13.5 0.10	16.9 0.12	
	Nitrate	mg/L	0.05	24	23	21	(50)	0	0.05	0.12	0.10	0.12	
	Silica	mg/L	5	24	23	23	80	0	13	16	14.5	16.0	
	Sodium	mg/L	0.05	24	23	23	180	0	42	62	49.7	58.9	
	Potassium	mg/L	0.05	24	23	23			2.4	3.6	2.8	3.5	
	Calcium	mg/L mg/L	0.05 0.05	24 24	23 23	23 23			14 7.6	23 11	18.8 9.4	22.9 11.0	
	Magnesium Chlorate	mg/L	0.03	24	23	23			0.20	0.83	0.46	0.77	
	Aluminium	mg/L	0.01	24	23	23	0.2	0	0.01	0.046	0.025	0.043	
	Antimony	mg/L	0.0001	24	23	0	(0.003)	0	<0.0001	<0.0001	<0.0001	<0.0001	
	Arsenic	mg/L	0.0001	24	23	23	(0.01)	0	0.0002	0.0005	0.0003	0.0005	
	Barium	mg/L	0.001	24	23	22	(2)	0	0.04	0.06	0.047	0.058	
2	Beryllium Boron	mg/L mg/L	0.0001 0.001	24 24	23 23	0 23	(0.06)	0	<0.0001 0.026	<0.0001 0.035	<0.0001 0.030	<0.0001 0.035	
	Cadmium	mg/L	0.001	24	23	0	(0.002)	0	<0.0001	<0.0001	<0.0001	<0.0001	
	Chromium	mg/L	0.0001	24	23	6	(0.05)	0	0.0001	0.0001	0.0001	0.0001	
i	Cobalt	mg/L	0.0001	24	23	0			<0.0001	<0.0001	<0.0001	<0.0001	
	Copper	mg/L	0.001	24	23	23	1 (2)	0	0.004	0.12	0.0329	0.0647	
	Iron Lead	mg/L	0.005 0.0001	24 24	23 23	9 20	0.3	0	0.006 0.0001	0.016 0.0018	0.0107 0.0005	0.0156 0.0015	
	Mercury	mg/L mg/L	0.0001	24	23	0	(0.01)	0	<0.0001	<0.0018	<0.0003	<0.0013	
	Manganese	mg/L	0.001	24	23	23	0.1 (0.5)	0	0.0001	0.031	0.0037	0.0179	
	Molybdenum	mg/L	0.0001	24	23	23	(0.05)	0	0.0002	0.0004	0.0003	0.0004	
	Nickel	mg/L	0.0001	24	23	22	(0.02)	0	0.0001	0.0005	0.0003	0.0004	
	Selenium	mg/L	0.0001	24	23	0	(0.01)	0	<0.0001	<0.0001	<0.0001	<0.0001	
	Silver Strontium	mg/L	0.001	24 24	23 23	0 23	(0.1)	0	<0.001 0.15	<0.001 0.26	<0.001 0.203	<0.001 0.249	1
	Thallium	mg/L mg/L	0.001	24	23	0			<0.0001	<0.0001	<0.0001	<0.0001	
	Tin	mg/L	0.0001	24	23	3			0.0001	0.0043	0.0016	0.0039	
	Titanium	mg/L	0.001	24	23	0			<0.001	<0.001	<0.001	<0.001	
	Uranium	mg/L	0.0001	24	23	0	(0.017)	0	<0.0001	<0.0001	<0.0001	<0.0001	
	Vanadium	mg/L	0.0001	24	23	19	2	0	0.0001	0.0003	0.0002	0.0002	
	Zinc Chloroform	mg/L μg/L	0.001	24 24	23 23	23 23	3	0	0.002 20.0	0.02 96.0	0.0063 43.1	0.0138	1
	Bromodichloro	µg/∟	1	۷.4	23	- 23		J	20.0	30.0	40.1		
	methane	μg/L	1	24	23	23		0	26.0	61.0	37.4		
	Dibromochloro							_					1
	methane Bromoform	μg/L μg/I	1	24 24	23	23		0	16.0 2.0	34.0 5.0	24.7		1
	Total THM's	μg/L μg/L	1	24	23 23	23	(250)	0	70.0	190.0	3.1 107.5		
	PFOS + PFHxS	μg/L	0.005	8	8	0	0.07	0	<0.005	<0.005	<0.005		
	Methyl Isoborneol	ng/L	1	2	5	1			<2	3	<2		
	Geosmin	ng/L	1	2	5	3			<2	6	2.6		
	Pesticide Residues -												Reticulated & Treate
	Dalapon (2,2-DPA)	μg/L	0.2	2	2	2	(500)	0	0.7	2.1	1.4		Refer QHFSS SSP0083
	Desethyl Atrazine Atrazine, 2-hydroxyl	μg/L ug/l	0.01	2 2	2	0 2	200	0	<0.01 0.01	<0.01 0.01	<0.01 0.01		
	Metolachlor	μg/L μg/L	0.01	2	2	0	(300)	0	<0.01	<0.01	<0.01		
	Imazapic	μg/L	0.02	2	2	0	(1000)	0	<0.02	<0.02	<0.02		
	Triclopyr	μg/L	0.07	2	2	0	(0.02)	0	<0.07	<0.07	<0.07		
	Hexazinone	μg/L	0.01	2	2	0	(0.4)	0	<0.01	<0.01	<0.01		

Table 3b -	Verification monitoring	results - Coa	stal Scheme		er								
				No. Samples to be				No. of					
				collected		No. Samples	ADWG	samples					
		Unit of		from Approved	Actual Total Samples	in which parameter	Aesthetic (Health)	exceeding water quality	Minimum	Maximum	Average of	95th	
	Parameter	Measure	LOR	Plan	Collected	was detected	Guideline	criteria	Result	Result	Results	Percentile	Comment
	рН	mg/L	0.1	104	381	381	6.5-8.5	0	7.1	8.5	7.4		
so.	Turbidity Conductivity	NTU µS/cm	0.01	104	382 110	382 110	5	0	0.06 235	0.201 984	0.11 513		
In House Test Results	Colour	Pt/Co	1	104	383	68	15	0	0	2	0.2		
ı K	Free chlorine residual	mg/L	0.1		379	379			0.28	1.99	1.20		
e Te	Total chlorine residual	mg/L	0.1	404	64	64			0.92	2.06	1.42		
sno	Alkalinity Total hardness	mg/L mg/L	0.1	104 104	111 111	111 111	200	0	59 1	129 160	104 118		
Ē	Iron	mg/L	0.01	104	377	342	0.3	0	0	0.07	0.01		
	Manganese	mg/L	0.001	104	382	313	0.1 (0.5)	0	0	0.069	0.011		
	Aluminium	mg/L mg/L	0.001	104 24	379 24	379 24	0.2 6.5-8.5	0	0.008 7.0	0.161 7.9	0.052 7.4	7.7	
	Turbidity	NTU	1	24	24	0	5	0	<1	<1	<1	<1	
	Colour	Pt/Co	1	24	24	0	15	0	<1	<1	<1	<1	
	Conductivity	μS/cm	5	24	24	24			450	640	523	570	
	Alkalinity Total hardness	mg/L mg/L	5 5	24 24	24 24	24 24	200	0	84 105	110 147	97 119	109 138	
	Total dissolved solids	mg/L	10	24	24	24	-30	0	270	360	306	330	
	Chloride	mg/L	2	24	24	24	250	0	68	130	91.2	110.0	
	Sulphate Fluoride	mg/L mg/L	2 0.05	24 24	24 24	24 24	250 (500) (1.5)	0	6.4 0.08	17 0.12	11.5 0.10	14.9 0.12	
	Nitrate	mg/L	0.05	24	24	24	(50)	0	4.8	8.4	6.98	8.19	
	Silica	mg/L	5	24	24	24	80	0	35	49	40.58	46.70	
	Sodium	mg/L	0.05	24	24	24	180	0	48	66	56.21	61.85	
	Potassium Calcium	mg/L mg/L	0.05 0.05	24 24	24 24	24 24			1.1 22	1.9 30	1.41 24.83	1.80 28.85	
	Magnesium	mg/L	0.05	24	24	24			12	18	14.00	16.00	
	Chlorate	mg/L	0.01	24	24	24			0.09	0.34	0.224	0.330	
	Aluminium	mg/L	0.01	24	24	24	0.2	0	0.038	0.078	0.059	0.077	
	Antimony Arsenic	mg/L mg/L	0.0001 0.0001	24 24	24 24	0 24	(0.003)	0	<0.0001 0.0002	<0.0001 0.0004	<0.0001 0.00027	<0.0001 0.00039	
	Barium	mg/L	0.001	24	24	24	(2)	0	0.027	0.043	0.0330	0.0410	
S.	Beryllium	mg/L	0.0001	24	24	0	(0.06)	0	<0.0001	<0.0001	<0.0001	<0.0001	
NATA Lab Results	Boron Cadmium	mg/L mg/L	0.001	24 24	24 24	24 0	(4.0)	0	0.022 <0.0001	0.032 <0.0001	0.0255 <0.0001	0.0290 <0.0001	
a R	Chromium	mg/L	0.0001	24	24	1	(0.05)	0	0.0001	0.0001	0.0001	0.0001	
A La	Cobalt	mg/L	0.0001	24	24	0			<0.0001	<0.0001	<0.0001	<0.0001	
IAT/	Copper	mg/L	0.001 0.005	24 24	24 24	12	1 (2) 0.3	0	0.001	0.005	0.0028 0.0066	0.0050	
_	Iron Lead	mg/L mg/L	0.0001	24	24	5 12	(0.01)	0	0.0001	0.0004	0.0008	0.0078 0.00040	
	Mercury	mg/L	0.0001	24	24	0	(0.001)	0	<0.0001	<0.0001	<0.0001	<0.0001	
	Manganese	mg/L	0.001	24	24	24	0.1 (0.5)	0	0.0004	0.0055	0.0013	0.0029	
	Molybdenum Nickel	mg/L mg/L	0.0001 0.0001	24 24	24 24	24 11	(0.05)	0	0.0002 0.0001	0.0003 0.0005	0.0002 0.0002	0.0003 0.0004	
	Selenium	mg/L	0.0001	24	24	22	(0.01)	0	0.0001	0.0003	0.00020	0.00030	
	Silver	mg/L	0.001	24	24	0	(0.1)	0	<0.001	<0.001	<0.001	<0.001	
	Strontium	mg/L	0.01	24	24	24			0.24	0.39	0.315	0.377	
	Thallium Tin	mg/L mg/L	0.0001 0.0001	24 24	24 24	0			<0.0001 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001	<0.0001 <0.0001	
	Titanium	mg/L	0.001	24	24	0			<0.001	<0.001	<0.001	<0.001	
	Uranium	mg/L	0.0001	24	24	6	(0.017)	0	0.0001	0.0001	0.00010	0.00010	
	Vanadium Zinc	mg/L mg/L	0.0001	24 24	24 24	24 15	3	0	0.0005 0.001	0.0025 0.024	0.0015 0.0069	0.0024 0.0198	
	Chloroform	µg/L	1	24	24	24		0	2.0	8.0	3.8	5.5150	
	Bromodichloro methane			24	24	24		0					
	Dibromochloro	μg/L	1	24	24	24		U	6.0	20.0	11.3		
	methane	μg/L	1	24	24	24		0	16.0	34.0	22.5		
	Bromoform Total THM's	μg/L	1	24 24	24 24	24	(250)	0	9.0	22.0	13.7		
	PFOS + PFHxS	μg/L μg/L	0.005	8	8	24 0	(250) 0.07	0	36.0 <0.005	79.0 <0.005	51.3 <0.005		6:2 FTS Treated Nov 2022
	Methyl Isoborneol	ng/L	1	2	2	0		0	<2	<2	<2		
	Geosmin	ng/L	1	2	2	0		0	<2	<2	<2		D 1. 10
	Pesticide Residues - Dalapon (2,2-DPA)	μα/L	0.2	2	2	0	(500)	0	<0.2	<0.2	<0.2		Reticulated & Treated Refer QHFSS SSP0083684
	Desethyl Atrazine	μg/L μg/L	0.01	2	2	0	20	0	<0.01	<0.2	<0.2		411 55 551 0005084
	Atrazine, 2-hydroxyl	μg/L	0.01	2	2	2	200	0	0.01	0.03	0.02		
	Metolachlor	μg/L	0.02	2 2	2 2	0	(300)	0	<0.02	<0.02	<0.02		
	Imazapic Triclopyr	μg/L μg/L	0.01	2	2	0	(1000)	0	<0.01 <0.07	<0.01 <0.07	<0.01 <0.07		
	Hexazinone	μg/L	0.01	2	2	1	(0.4)	0	0.01	0.01	0.01		
	Others detected:-	μg/L											

	Verification monitoring	results - Coll	iinsviile Schei	No. Samples	ater								
				to be collected		No. Samples	ADWG	No. of samples					
				from	Actual Total	in which	Aesthetic	exceeding				051	
	Parameter	Unit of Measure	LOR	Approved Plan	Samples Collected	parameter was detected	(Health) Guideline	water quality criteria	Minimum Result	Maximum Result	Average of Results	95th Percentile	Comment
	pH	mg/L	0.1	104	412	412	6.5-8.5	0	6.76	7.87	7.4		
ø	Turbidity Conductivity	NTU μS/cm	0.01	104	411 150	411 150	5	0	0.05 113	1.12 250	0.16 167		
In House Test Results	Colour	Pt/Co	1	104	405	162	15	0	0	14	1.3		
st R	Free chlorine residual	mg/L	0.1		406	406			0.2	2.14	1.1		
se Te	Total chlorine residual Alkalinity	mg/L mg/L	0.1	104	401 149	100 149			0.198 0.45	3.25 83	1.4 45		
Hous	Total hardness	mg/L	0.1	104	0	143	200		0.43	85	43		
=	Iron	mg/L	0.01	104	405	398	0.3	0	0	0.05	0.017		
	Manganese Aluminium	mg/L mg/L	0.001	104 104	405 412	384 412	0.1 (0.5)	0	0.008	0.014 0.266	0.003 0.020		
	pH	mg/L	0.001	24	24	24	6.5-8.5	0	6.6	7.3	6.9	7.2	
	Turbidity	NTU	1	24	24	0	5	0	<1	<1	<1	<1	
	Colour	Pt/Co	1 5	24	24	0	15	0	<1	<1	<1	<1	
	Conductivity Alkalinity	μS/cm mg/L	5	24 24	24 24	24 24			150 28	280 74	192 52	274 73	
	Total hardness	mg/L	5	24	24	24	200	0	38	77	54	76	
	Total dissolved solids	mg/L	10	24	24	24	250	0	92	170	116	166	
	Chloride Sulphate	mg/L mg/L	2	24 24	24 24	24 24	250 250 (500)	0	12 1.7	21 38	16.8 17.7	20.9 34.9	
	Fluoride	mg/L	0.05	24	24	24	(1.5)	0	0.03	0.08	0.053	0.080	
	Nitrate	mg/L	0.05	24	24	24	(50)	0	0.08	0.46	0.204	0.327	
	Silica Sodium	mg/L mg/L	5 0.05	24 24	24 24	24 24	80 180	0	10 12	17 25	14.2 15.7	16.9 23.1	
	Potassium	mg/L	0.05	24	24	24	100	0	0.93	2.1	1.40	2.00	
	Calcium	mg/L	0.05	24	24	24			9.8	20	13.8	20.0	
	Magnesium	mg/L	0.05	24	24	24			3.3	6.6	4.85	6.49	
	Chlorate Aluminium	mg/L mg/L	0.01 0.01	24 24	24 24	24 24	0.2	0	0.13 0.008	0.36 0.052	0.218 0.0208	0.344 0.0307	
	Antimony	mg/L	0.0001	24	24	0	(0.003)	0	<0.0001	<0.0001	<0.0001	<0.0001	
	Arsenic	mg/L	0.0001	24	24	17	(0.01)	0	0.0001	0.0003	0.00019	0.00030	
	Barium Beryllium	mg/L mg/L	0.001	24 24	24 24	24 0	(2)	0	0.015 <0.0001	0.042 <0.0001	0.0229 <0.0001	0.0390 <0.0001	
ts	Boron	mg/L	0.001	24	24	24	(4.0)	0	0.011	0.18	0.023	0.023	
NATA Lab Results	Cadmium	mg/L	0.0001	24	24	0	(0.002)	0	<0.0001	<0.0001	<0.0001	<0.0001	
ō R	Chromium Cobalt	mg/L mg/L	0.0001 0.0001	24 24	24 24	0	(0.05)	0	0.0002 <0.0001	0.0002 <0.0001	0.0002 <0.0001	0.0002 <0.0001	
A La	Copper	mg/L	0.0001	24	24	24	1 (2)	0	0.001	0.057	0.0105	0.0327	
₽	Iron	mg/L	0.005	24	24	12	0.3	0	0.005	0.029	0.0132	0.0263	
_	Lead Mercury	mg/L	0.0001 0.0001	24 24	24 24	10 0	(0.01)	0	0.0001 <0.0001	0.0002 <0.0001	0.00013 <0.0001	0.0002 <0.0001	
	Manganese	mg/L mg/L	0.0001	24	24	24	0.1 (0.5)	0	0.0001	0.0063	0.0015	0.0032	
	Molybdenum	mg/L	0.0001	24	24	24	(0.05)	0	0.0002	0.0006	0.0003	0.0006	
	Nickel	mg/L	0.0001	24	24	22	(0.02)	0	0.0001	0.0003	0.00021	0.00030	
	Selenium Silver	mg/L mg/L	0.0001	24 24	24 24	0	(0.01)	0	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	
	Strontium	mg/L	0.01	24	24	24	\- <i>/</i>	-	0.077	0.18	0.116	0.180	
	Thallium	mg/L	0.0001	24	24	0			<0.0001	<0.0001	<0.0001	<0.0001	
	Tin Titanium	mg/L mg/L	0.0001	24 24	24 24	0			<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	
	Uranium	mg/L	0.0001	24	24	0	(0.017)	0	<0.0001	<0.0001	<0.0001	<0.0001	
	Vanadium	mg/L	0.0001	24	24	24	2		0.0005	0.0032	0.0016	0.0029	
	Zinc Chloroform	mg/L μg/L	0.001	24 24	24 24	24 24	3	0	0.001 8.0	0.023 62.0	0.0075 28.8	0.0184	1
	Bromodichloro												
	methane Dibromochloro	μg/L	1	24	24	24		0	8.0	22.0	13.8		
	methane	μg/L	1	24	24	24		0	2.0	8.0	5.0		
	Bromoform	μg/L	1	24	24	1		0	1.0	1.0	1.0		
	Total THM's	μg/L	1	24	24	24	(250)	0	21.0	90.0	47.8		Retic & Treated 6:2 FTS
	PFOS + PFHxS	μg/L	0.005	8	8	0	0.07	0	<0.005	<0.005	<0.005		present Nov 2022
	Methyl Isoborneol	ng/L	1	2	2	0		0	<2	<2	<2		
	Geosmin	ng/L	1	2	2	0		0	<2	<2	<2		Paticulated 9. Tracta
	Pesticide Residues - Dalapon (2,2-DPA)	μg/L	0.2	2	2	2	(500)	0	0.2	0.5	0.4		Reticulated & Treated Refer QHFSS SSP008368
	Desethyl Atrazine	μg/L	0.01	2	2	0	20	0	<0.01	<0.01	<0.01		
	Atrazine, 2-hydroxyl	μg/L	0.01	2	2	0	200	0	<0.01	<0.01	<0.01		
	Metolachlor Imazapic	μg/L μg/L	0.02	2 2	2	0	(300)	0	<0.02 <0.01	<0.02 <0.01	<0.02 <0.01		1
	Triclopyr	μg/L	0.07	2	2	0	(0.02)	0	<0.07	<0.07	<0.01		1
	ттогору.	13											

Table 3d -	Verification monitoring	results - Pro	serpine Sche	me Potable V	Vater								
				No. Samples to be				No. of					
				collected	A -+ T-+-	No. Samples	ADWG	samples					
		Unit of		from Approved	Actual Total Samples	in which parameter	Aesthetic (Health)	exceeding water quality	Minimum	Maximum	Average of	95th	
	Parameter pH	Measure mg/L	LOR 0.1	Plan 104	Collected 390	was detected 390	Guideline 6.5-8.5	criteria 0	Result 7.1	Result 7.9	Results 7.6	Percentile	Comment
	Turbidity	NTU	0.01	104	390	390	5	0	0.05	0.70	0.10		
st.	Conductivity	μS/cm	1		124	124			420	703	499		
Rest	Colour Free chlorine residual	Pt/Co mg/L	0.1	104	390 386	54 386	15	0	0.5	1.5 2.05	0.2 1.13		
lest	Total chlorine residual	mg/L	0.1		76	76			0.65	2.05	1.13		
esn	Alkalinity	mg/L	0.1	104	123	123			48.6	162.8	108		
In House Test Results	Total hardness	mg/L	0.1	104	121	121	200	0	15.2	158	108		
_	Iron Manganese	mg/L mg/L	0.01	104 104	388 388	357 326	0.3	0	0	0.05 0.075	0.013 0.008		
	Aluminium	mg/L	0.001	104	388	388	0.2	1	0.007	0.259	0.073		
	pН	mg/L	0.1	24	24	24	6.5-8.5	0	7.2	8.0	7.6	7.9	
	Turbidity Colour	NTU Pt/Co	1	24 24	24 24	0	5 15	0	<1 <1	<1 <1	<1 <1	<1 <1	
	Conductivity	μS/cm	5	24	24	24	13	U	430	520	488	519	
	Alkalinity	mg/L	5	24	24	24			98	120	108	120	
	Total hardness	mg/L	5	24	24	24	200	0	95	113	108	112	
	Total dissolved solids Chloride	mg/L mg/L	10	24 24	24 24	24 24	250	0	260 63	330 80	300.0 74.0	320.0 79.0	
	Sulphate	mg/L	2	24	24	24	250 (500)	0	12	20	14.7	18.9	
	Fluoride	mg/L	0.05	24	24	24	(1.5)	0	0.1	0.14	0.120	0.130	
	Nitrate Silica	mg/L mg/L	0.05 5	24 24	24 24	24 24	(50) 80	0	4.4 33	8.9 54	7.29 46.1	8.69 52.9	
	Sodium	mg/L	0.05	24	24	24	180	0	46	62	56.3	61.0	
	Potassium	mg/L	0.05	24	24	24			0.86	1.5	1.05	1.30	
	Calcium	mg/L	0.05	24	24	24			19	23	21.92	23.00	
	Magnesium Chlorate	mg/L mg/L	0.05 0.01	24 24	24 24	24 24			12 0.18	14 0.47	13.13 0.277	14.00 0.389	
	Aluminium	mg/L	0.01	24	24	24	0.2	0	0.006	0.16	0.083	0.149	
	Antimony	mg/L	0.0001	24	24	0	(0.003)	0	<0.0001	<0.0001	<0.0001	<0.0001	
	Arsenic Barium	mg/L mg/L	0.0001 0.001	24 24	24 24	24 24	(0.01)	0	0.0002	0.0004 0.031	0.0003 0.026	0.0004 0.030	
	Beryllium	mg/L	0.0001	24	24	0	(0.06)	0	<0.0022	<0.001	<0.0001	<0.0001	
ţ.	Boron	mg/L	0.001	24	24	24	(4.0)	0	0.024	0.033	0.0269	0.0319	
NATA Lab Results	Cadmium Chromium	mg/L	0.0001 0.0001	24 24	24 24	0	(0.002)	0	<0.0001 0.0001	<0.0001 0.0001	<0.0001 0.0001	<0.0001 0.0001	
a a	Cobalt	mg/L mg/L	0.0001	24	24	0	(0.03)	0	<0.0001	<0.0001	<0.0001	<0.0001	
<u>₹</u>	Copper	mg/L	0.001	24	24	12	1 (2)	0	0.001	0.003	0.0018	0.0030	
¥	Iron	mg/L	0.005	24	24	1	0.3	0	0.007	0.007	0.007	0.007	
	Lead Mercury	mg/L mg/L	0.0001 0.0001	24 24	24 24	0	(0.01)	0	0.0001 <0.0001	0.0001 <0.0001	0.0001 <0.0001	0.0001 <0.0001	
	Manganese	mg/L	0.001	24	24	24	0.1 (0.5)	0	0.0002	0.0031	0.00085	0.00218	
	Molybdenum	mg/L	0.0001	24	24	24	(0.05)	0	0.0002	0.0003	0.00021	0.00029	
	Nickel Selenium	mg/L mg/L	0.0001 0.0001	24 24	24 24	10 24	(0.02)	0	0.0001 0.0002	0.0016 0.0004	0.00033 0.00032	0.00097 0.00040	
	Silver	mg/L	0.001	24	24	0	(0.1)	0	<0.001	<0.001	<0.001	<0.001	
	Strontium	mg/L	0.01	24	24	24			0.24	0.31	0.285	0.300	
	Thallium Tin	mg/L	0.0001	24 24	24	0			<0.0001	<0.0001	<0.0001	<0.0001	
	Titanium	mg/L mg/L	0.0001 0.001	24	24	0			<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	
	Uranium	mg/L	0.0001	24	24	23	(0.017)	0	0.0001	0.0002	0.00013	0.00020	
	Vanadium	mg/L	0.0001	24	24	24	2	_	0.0015	0.0036	0.00259	0.00336	
	Zinc Chloroform	mg/L μg/L	0.001	24 24	24 24	12 21	3	0	0.001 1.0	0.002 11.0	0.0016 3.0	0.0020	
	Bromodichloro												
	methane Dibromochloro	μg/L	1	24	24	24		0	3.0	22.0	8.6		
	methane	μg/L	1	24	24	24		0	8.0	34.0	18.0		
	Bromoform	μg/L	1	24	24	24		0	8.0	20.0	12.6		
	Total THM's	μg/L	1	24	24	24	(250)	0	22.0	80.0	42.0		Potic 6:2 FTC mas A'
	PFOS + PFHxS	μg/L	0.005	8	8	0	0.07	0	<0.005	<0.005	<0.005		Retic 6:2 FTS present Nov 2022, Feb 2023
	Methyl Isoborneol	ng/L	1	2	2	0		0	<2	<2	<2		,
	Geosmin	ng/L	1	2	2	0		0	<2	<2	<2		Daticulated C. Turntan
	Pesticide Residues - Dalapon (2,2-DPA)	μg/L	0.2	2	2	0	(500)	0	<0.2	<0.2	<0.2		Reticulated & Treated Refer QHFSS SSP0083684
	Desethyl Atrazine	μg/L	0.01	2	2	1	20	0	0.01	0.01	0.01		2. 2. 2. 22 25. 2223004
	Atrazine, 2-hydroxyl	μg/L	0.01	2	2	1	200	0	0.01	0.01	0.01		
	Metolachlor Imazapic	μg/L μg/L	0.02	2	2	0	(300)	0	0.01 <0.01	0.02 <0.01	0.02 <0.01		
	Triclopyr	μg/L μg/L	0.01	2	2	0	(0.02)	0	<0.07	<0.07	<0.07		
	Hexazinone	μg/L	0.01	2	2	1	(0.4)	0	0.01	0.01	0.01		
	Others detected:-	μg/L						<u> </u>			<u> </u>	<u> </u>	

		i verification							
					No. of	No. of			
					samples	samples	No. of		
			No. of		collected in	collected in	failures for		
Drinking			samples from	No. of	which E. coli	previous 12	previous 12		Compliano
water			Approved	samples	is detected	month	month	% of samples	with 98%
scheme:	Year	Month	Plan	collected	(i.e. a failure)	period	period	that comply	annual val
		July	21	22	0	256	0	100	YES
		Aug	21	24	0	263	0	100	YES
	2022	Sept	21	21	0	262	0	100	YES
a)	2022	Oct	21	24	0	265	0	100	YES
em		Nov	21	21	0	262	0	100	YES
Bowen Scheme		Dec	21	21	0	265	0	100	YES
en (Jan	21	24	0	268	0	100	YES
ò		Feb	21	21	0	270	0	100	YES
Δ	2022	Mar	21	26	0	270	0	100	YES
	2023	Apr	21	21	0	270	0	100	YES
		May	21	24	0	271	0	100	YES
		June	21	21	0	270	0	100	YES
		July	20	20	0	237	0	100	YES
		Aug	20	22	0	239	0	100	YES
	2022	Sept	20	19	0	235	0	100	YES
a)		Oct	20	19	0	234	0	100	YES
Coastal Scheme		Nov	20	26	0	240	0	100	YES
Sch		Dec	20	20	0	260	0	100	YES
<u>a</u>		Jan	20	20	0	242	0	100	YES
oasi		Feb	20	15	0	240	0	100	YES
ŭ	2022	Mar	20	25	0	247	0	100	YES
	2023	Apr	20	20	0	247	0	100	YES
		May	20	23	0	253	0	100	YES
		June	20	21	0	250	0	100	YES
İ		July	18	18	0	223	2	99.1	YES
		Aug	18	21	0	228	2	99.1	YES
		Sept	18	18	0	228	2	99.1	YES
иe	2022	Oct	18	21	0	231	2	99.1	YES
her		Nov	18	28	0	239	2	99.2	YES
Sc.		Dec	18	18	0	242	2	99.2	YES
ville Scheme		Jan	18	23	0	247	2	99.2	YES
Collins		Feb	18	18	0	250	2	99.2	YES
Col		Mar	18	18	0	245	2	99.2	YES
	2023	Apr	18	18	0	240	0	100	YES
		May	18	21	0	240	0	100	YES
		June	18	18	0	240	0	100	YES
		July	18	19	0	244	0	100	YES
		Aug	18	23	0	245	0	100	YES
	2022	Sept	18	19	0	245	0	100	YES
ae	2022	Oct	18	19	0	245	0	100	YES
Proserpine Scheme		Nov	18	24	0	247	0	100	YES
Sc Sc		Dec	18	19	0	245	0	100	YES
pine		Jan	18	24	0	250	0	100	YES
seri		Feb	18	20	0	252	0	100	YES
Pro		Mar	18	19	0	246	0	100	YES
_	2023	Apr	18	19	0	246	0	100	YES
		May	18	23	0	250	0	100	YES
		June	18	19	0	247	0	100	YES

Table 5 - Raw Water Monito	oring Resu	ilts			
Parameter	Unit	Bowen Raw	Coastal Raw	Collinsville Raw	Proserpine Raw
Date Sampled		16/05/2023	16/05/2023	23/05/2023	16/05/2023
Methyl Isoborneol (MIB)	ng/L	<2	<2	<2	<2
Geosmin	ng/L	<2	<2	<2	<2
Non Purgeable Organic Carbo	mg/L	3.9	1.3	1.7	0.9
Dissolved NPOC	mg/L	3.7	1.3	LA	0.7
Date Sampled		16/05/2023	16/05/2023	16/05/2023	16/05/2023
Total Alpha Activity	Bq/L	<0.1	<0.1	<0.1	<0.1
Total Beta Activity	Bq/L	<0.1	<0.1	<0.1	<0.1
K40 Corrected Beta Activity	Bq/L	<0.1	<0.1	<0.1	<0.1
Herbicides -					
Metolachlor	μg/L	<0.02	<0.02	<0.02	0.03
Bromacil	μg/L	<0.02	<0.02	<0.02	0.13
Desethyl Atrazine	μg/L	0.01	0.01	<0.01	0.01
Atrazine, 2-hydroxyl	μg/L	<0.01	0.03	<0.01	<0.01
Hexazinone	μg/L	<0.01	0.02	<0.01	<0.01

Table 6 - Bowen Raw Water Blue Green Algae Results										
Bowen Raw Water Blue Green Algae (cells/mL)										
16/08/2022	4110									
15/11/2022	60000	Toxins <0.03 ug/L								
21/02/2023	118400	Toxins <0.03 ug/L								
16/05/2023	8000									

Appendix B – Implementation of the DWQMP Risk Management Improvement Program

APPENDIX I	B - R	isk Manage	ement In	nprov	ement Plan							Completed
												Ongoing
Scheme												Lastest comments
Component / Sub- component		Hazardous event	Hazard	Priori ty	Interim Action(s)	Short-term Action(s)	Long-term Action(s)	Original Target date/s	Revised Target Date	Cost	Responsibility	Actions Taken
Catchment - Proserpine River	1	Inadequate Water Supply - Bow en WTP	Supply loss & pump damage	Medi um	Monitor flows and pump efficiencies. Replace pump impellers. Start design w ork on options. Completed	Remove sand from around spears and rock gabling in 2018 Completed	-Open water intake, - major maintenance around spears (remove geofabric & rock repack)	- Nov 2018 - May 2019	-Aug 2019 (maintenan- ce) -June 2022 -Jun 2023 - Jun 2024	Est \$800K for intake \$500K for river spear maint	Treatment Operations Manager, Planning & Assets Engineer, Capital Works Manager, Principal Engineer (Treatment)	Initial-Open w ater intake design w ork commenced and initial tender released. Preliminary works commenced. 2018-Open w ater intake utilising a diesel pump operational. Civil construction works delayed up to 3 years as tender prices significantly higher than anticipated. 2023 - Civil works now at concept stage, w orks progressing. Maintenance done in 2018, w ill be carried out again 2019. 3 stage capital process-Building; electrical; mechanical; starting Jan 2022 Replacement of existing pumps underw ay in place and operational. Assessing electric pump to replace diesel pump - Ongoing Maintenance of spears - ongoing Future w orks - increase spear capacity, still in concept design, open water intake & options for bores besid river.
Catchment - Proserpine Bores	30	Inadequate Water Supply - Proserpine WTP	Supply loss & pump damage	Medi um	Engaged subject matter expert to carry out investigation and design	Bore investigation underw ay	New bores (and- pump station) to replace Bore 1, 2, 3 - low er risk w ater - closer proximity to Proserpine WTP - Investigate open water intake as a supply option	2022-23	2024-25	Est \$2.5M	Planning & Assets Engineer	2018-Concept design completed Pump Station complete, undergoing commiscioning. Refer No. 29 Panning for bores underway; funding-application in process for construction of 4 bores (1 bore funded) Design phase underway on schedule; Capital w orks due for completion 23-24 Bore 10 redirected
WTP	32	Instrumentati on Failure	Loss of online monitori ng	Low			Replace Turbidity Analysers with HACH units as required.		June 2023 Dec 2023		Principal Engineer (Treatment)	Due to unavailability of service- technician (CCV/ID lockdowns) will- change to service provider with local technicians. Cabinet and meters delivered, installation scheduled by June 23 Standardisation across region through WIM Alliance.
Collins ville WTP	5	Filtration Failure	Turbidit y etc.	Low		Turbidity Analysers at each Filter	Control system to have more control over plant		Short Term July 2018 Long Term July 2019 Dec 2022 Dec 2023		Treatment Operations Manager Principal Engineer (Treatment)	Initial-Analysers received 2018-Turbidity analysers installed. SCADA control scheduled for completion September 2019. SCADA control delayed due to incorportion into Solar panel project with completion due end 2022. Further delays due to absences of key staff. Existing Radtel to stay with ClearScada overlays, there may be constraints on w hat can be done. Secondary control completed on each filter to enable plant shutdow n
Collins ville WTP	33	Bectrical components failure - pump, power	Loss of Supply			Collinsville Solar Project		Jun-22	Dec 2023	\$900k	Treatment- Operations- Manager Capital Works Project Manager	Solar energy project to run both Collinsville WTP and STP-with electrical upgrades at both plants, incorporating SCADA control, generator will be incorporated. No STP will be included at this stage. Delayed due to absences of key staff (including Project Manager). Initial-project was simple, but has grown to include rewiring and existing-transformer needs to be replaced (26-week wait) Scope revised to fit within scope and existing funding. No rew iring etc. In house project manager and superintendant employed to complete package of works.

Storage Reservoirs	20	Human access to reservoirs	Bacteria I, Viral and Protozo an contami nation due to animal or human entry	High	Inspection of all reservoir roof structures, security and vermin proofing	Immediate minor repairs to identified issues where possible	Full asset check of all reservoir structures, vermin proofing material and site security, with asset list and mapping creation. Also preventative maintenance schedule created	Dec-15	Ongoing	Staff time + w hat ever tasks are required.	Treatment Operations Manager & field staff, Network Operations Managers	Initial-Inspections complete. Roof repairs done. Monthly Reservoir inspections commenced. Repairs to vermin proofing from cyclone Debbie required - Scheduled for October - December 2017. 2018-Ongoing External audit of all reservoirs scheduled for 2019 (including safety and security). Report will feed into the database for scheduling of works required. Inspections ongoing - Operators-water quality; Networks-structural/mechanical External audit money used for maintenance and audit carried out by our own staff. Remaining findings included into maintenance schedule. Repair works to commence on Mt Devlin reservoir.
Security	31	Cybersecurity	Breach into SCADA - at WTPs or in Networ k	High		CCTV & Boom gates at plants. External Audit of all sites	Implement audit actions	Short Term- end 2019; Long Term 2020	Jun-24		Treatment Operations Manager; Netw ork Operations Managers	2018-CCTV & Boomgates installation commenced. External audit scope devised. Site Safety - STP's completed. Business case to be developed for high risk w ater sites (eg Proserpine WTP as is a multi use depot) for electronic gates. Multiple locks are in use in some areas - to be removed. CCTV not working consistently, footage not available. Working with Facilities on CCTV Slide gates preferable to boom gates Cybersecurity - SCADA Strategy and 16 quick w ins inititated. Ongoing. Completed (initial items)
Staff Training and Awareness	34	Staffing	Insuffici ent staffing redunda ncy	High	Quality over Quantity		Fully Trained operators for relief use at any site				Treatment Operations Manager	No redundancy staff available for periods of absence. Collinsville WTP-only available backup has experience but no qualifications. Replacement staff very difficult to get. Only Trainee not filled. Continuing with staff rotation program to enable staff multiskilling
Storage Reservoirs	35	Human access to reservoirs	Bacterial, Viral and Protozoan contamina tion due to animal or human entry	High			Repair works to reservoirs	Mt Devlin - June 2024 Bow en - June 2025 Cannonval e - June 2026 Shute Harbour- June 2025			Capital Works Project Manager	Collinsville, Miller St - completed Collinsville, Mt Devlin - RPEQ certified inspection identified additional w orks to meet regulations & specs. Works tendered to replace roof, vermin proofing and repairs up to required specs. Bow en, 12ML - Reroofing, stair and roof access Bow en, 3ML - Roof replacement, roof & stair access & leak detection and repair Cannonvale - Structural inspection and subsequent repair, dependent on Cannon Valley reservoirs on line. Shute Harbour (Mt Roper) - access fencing
Collins ville WTP	4	Contaminatio n by Fresh Water Shellfish	Taste & Odour	Low	Shellfish removed as soon as observed. Regular inspections. Chlorination.	- PAC dosing initiated as required to remove taste and odour compounds			Ongoing	Operational cost as required	Operator	Initial-Ongoing maintenance; PAC dosing can be utilised to reduce taste and odour compounds Ongoing Complete Drain and clean of clarifier 2020 (travelling bridge also adjusted) Maintenance ongoing
Reticulation	6	Chlorine Overdose	Taste / Odour	Low	Sodium hypochlorite dosing based on flow rate in WTP. Online chlorine analysers at plant have high chlorine CCP alarm that initiates plant shutdow n. Daily sampling undertaken.	Telemetry to be installed to new online instrumentation within the reticulation.	Investigate effect of closing down re- chlorination stations & installation of more online analysers at strategic locations around the region.	Jun-19	Jun-22	\$10K for telemetry on new analysers.	Treatment Operations Manager	Initial-Online chlorine residual analysers have been installed within the Bow en, Proserpine & Cannonvale reticulation. Extra (Auto) sodium hypochlorite monitoring & dosing equipment installed at Bow en reservoir & Flemington rd chlorinator. 2018-Bow en reservoir completed. Flemington Rd chlorinator to be decommissioned. Railway Rd (Merinda) dosing stations upgraded. Telemetry for all analysers scheduled for 2021-22. Southern reticulation netw ork upgrade scheduled, See #29.

Reticulation	7	Chlorination failure / Loss of Residual / Chlorinator failure	Public health	High	Sodium hypochlorite dosing based on flow rate in WTP. Online chlorine analysers at plant have low chlorine CCP alarm that initiates plant shutdown. Daily sampling undertaken.	Telemetry to be installed to new online instrumentation within the reticulation.	Investigate effect of closing down re- chlorination stations & installation of more online analysers at strategic locations around the region.	Jul-19		\$10K for telemetry on new analysers.	Treatment Operations Manager	As per No. 6
Reticulation	9	Backflow	public health / Aestheti cs	High	All RPZDs to be tested	RPZD testing schedule to be implemented with checks to ensure tests are completed in time. Faulty devices to be repaired or replaced.	Assets mapped and listed and annual preventative maintenance implemented into councils systems. Investigate if RPZ are present as part of meter	Nov-15	Nov-19	Staff time	Treatment Operations Manager, Trade Waste Coordinator, Netw ork Operations Managers	Initial-Incomplete lists have been developed for Northern and Southern areas. Consolidating this role into a regional one through the trade waste coordinator. 2018-This role has moved back to Water Operations. Audit completed, lists to be compiled into the new Council system. Ongoing
Reticulation	10	High flow (sediments mobilised, slimes detached)	Aestheti cs / Suspen ded Solids / Taste, Odour & Colour	Medi um	Flushing program	Agging program	Figging program		Ongoing	Staff time	Hanning & Assets Engineer, Network Operations Managers	Initial-Pigging program underw ay 2018-Ongoing Includes bore mains. Ongoing
Reticulation	11	Slimes detaching	Aestheti cs / Suspen ded Solids / Taste, Odour & Colour	Medi um	Flushing program	Figging program	Agging program		Ongoing	Staff time	Planning & Assets Engineer, Network Operations Managers	Initial-Pigging program underway 2018-Ongoing Ongoing
Bowen - Proserpine main	17	Farmers over use of treated w ater	Water supply cut-off / Public health	High	Monitoring of usage and communication with farmers using WRWW treated water.	Future planning of use by farmers, with farmers	Farmers and state government to use alternatives to treated water.	tbc	Dec-16	Staff time	Planning & Assets Engineer	Initial-Only 1 user allocation still in effect 2018-Monitoring on other potential users.
Bowen - Proserpine main	18	Farmers contaminatin g Drinking w ater supply	Public health	Medi um	Communication with Farmers	Farmers to be asked to create SOPs for their usage of supply	Council to review farmers SOPs & processes for turning w ater on/off & usage. Also farmers to eventually use alternatives to treated drinking	tbc	Dec-16	Staff time	Planning & Assets Engineer	Initial-Only 1 user allocation still in effect 2018-Monitoring on other potential users.
Storage Reservoirs	21	Animal Access to reservoirs.	Bacteria I, Viral and Protozo an contami nation n due to animal or human	High	Inspection of all reservoir roof structures, security and vermin proofing	Immediate minor repairs to identified issues w here possible	Full asset check of all reservoir structures, vermin proofing material and site security, with asset list and mapping creation. Also preventative maintenance schedule created & implemented	Dec-15	Ongoing	Staff time + w hat ever tasks are required.	Treatment Operations Manager & field staff, Netw ork Operations Managers	Initial-Inspections complete. Roof repairs done. Monthly Reservoir inspections commenced. Repairs to vermin proofing from cyclone Debbi required - Scheduled for October - December 2017. 2018-Ongoing Ongoing
Storage Reservoirs	22	Short circuiting of reservoirs	Bacteria I, Viral, Protozo a	Medi um	Reservoirs to be operated to ensure turnover (w hen network allows).	Possible pipew ork changes	Install mixers if appropriate. Installing sample taps at reservoirs to enable monthly sampling.	2017-18	Ongoing Monitoring	Staff time	Treatment Operations Manager.	Initial-Reservoirs appear to have appropriate mixing via operational level controls. Regular sampling to ensure residual maintained carried out each month. 2018-Ongoing Ongoing

Security	25	Water quality	Water quality	High			In-depth Risk assessment and control measures to improve security at drinking water supply system sites and WTPs	Jun-16	Ongoing		Treatment Operations Manager, Netw ork Operations Managers, Team Leaders	Initial-Risk assessments contained within DWQMP. Monthly Reservoir checks improve security on site. 2018-Ongoing Ongoing
Operation and Maintenance Procedures	26			High	Draft set of procedures to be review ed and updated.	Additional procedures required identified, drafted, review ed and implemented	Regular review	Dec-15	Ongoing	Staff time	Treatment Operations Manager; Network Operations Managers, Field Staff, Environmental Management Coordinator	Initial-A list of procedures (included in DWQMP) will be review ed on 2 yearly basis. Further procedures identified in risk assessments will be developed as required. 2018-Ongoing Ongoing
Staff Training and Awareness	27	Staff training and awareness	Staff training and awaren ess	High			Implement training and aw areness workshops once management plan approved in toolbox talks. Assess training need through internal audits and general feedback. KPI toolbox talk, updated ADWG related toolbox talks	Dec-15	Ongoing	Staff time	Treatment Operations Manager; Senior Staff, Field Staff, Environmental Management Coordinator	Initial-Gap analysis training conducted in September 2017 to certify operators under new national training package (NWP15). Refresher may be required for new staff, and new staff will also be updated under the new training package. 2018-Ongoing Ongoing
Customer Awareness Processes	28	Customer aw areness	Custom er aw aren ess	Mediu m			Customer process definition and provide details to customer in customer service standards on levels of service they can expect.	Dec-15	Ongoing	Staff time	Treatment Operations Manager; Environmental Management Coordinator, Website client liaison.	Initial-Complete. Updated standards uploaded onto Whitsunday Regional Councils w ebsite as required. 2018-Ongoing Ongoing
WTP	2	Pow er failure	Loss of supply	High	Bectrician to attend site	Generators to be installed at sites, see actions taken	Emergency Management Plan	Dec-16	Dec 2019 June 2022	Staff time	Operator; Senior staff	Initial-Generators to be installed at Foxdale bores, Coastal WTP, Bow en WTP Generator at Proserpine booster Solar Farm at Bow en WTP to supply plant & grid 2018-Generators installed at Foxdale bores, Dodd St bores, Coastal WTP, Bow en WTP. Solar farm at Bow en WTP operational. Additional generators ordered for Proserpine WTP, Collinsville WTP, Proserpine high lift and a mobile unit. Generators installed at Proserpine WTP, Proserpine High Lift pump and 3 x mobile units. Collinsville Solar Project underw ay See RMIP#33 Completed
WTP	3	Instrumentati on Failure	Loss of online monitori ng	Low		Coastal WTP - Install new analysers at Clear Water Tank	Coastal WTP - upgrade PLC and control telemetry at bores		Short Term July 2018 Long Term July 2019		Treatment Operations Manager	Initial-Analysers received 2018-Completed. Additional work - connecting all bores to SCADA Completed
Reticulation	29	Chlorination failure / Loss of Residual / Chlorinator failure	Public health	High	Isolate Bore 10 from direct connection to potable water network (currently high pressure potable water going to bore)	Bulk Water Project. Purchase land for Cannon Valley Reservoir.	Deliver Cannonvale Bulk Water Project, build Cannon Valley reservoir and renew pipeline from Proserpine.	Short Term 2020-21 Long Term 2021-22			Planning & Assets Engineer - Network Operations Managers COO.	2018-Design complete. Initial project implementation. Bore 10 isolated from network and redirected to Proserpine WTP. Reservoirs x 2 under construction, completion due June 2022 Network reconfiguration after construction completion. June 2022 - Construction complete; Necessary reconfiguration complete. Not on-line as yet. More work required on program and timings for the works required at Coastal WTP. Completed

Reticulation	8	Main bursts / Repairs Cross Contaminatio	Aestheti cs / suspen ded solids / taste & odour	Medi um	Monitor flow , reservoir levels, pressure, turbidity: Re- chlorination	Develop a mains burst / repair procedure. Training of operations staff on importance of Hygiene practices (Chlorination of lines follow ing repair, chlorine test on reconnection) Develop a mains burst / repair	Investigate best- practice chlorination of mains following a repair.	Dec-16	Dec-17	Staff time Staff time	Treatment Operations Manager, Netw ork Operations Managers Treatment Operations	2018-Completed Initial-A chlorination of New mains procedure has been developed. A
Reticulation	12	n (close sew er proximity)	Protozo a			procedure. Training of operations staff on importance of Hygiene practices (Chlorination of lines follow ing repair, chlorine test on reconnection)	mains following a repair.				Manager, Netw ork Operations Managers	mains burst / repair procedure will be developed. 2018-Completed. See #8
Reticulation	13	New main connections (contaminatin g existing system)	Aesthetic s / Suspende d Solids / Taste, Odour & Colour			Procedure for re- chlorination of new main prior to connection			Complete		Treatment Operations Manager, Netw ork Operations Managers	Initial-A chlorination of New mains procedure has been developed. 2018-Completed. See #8
Recycled Water	14	Cross Connection to recycled water infrastructur e	Bacteria I, Viral, Protozo a	Low			RPZD's required and to be checked annually	Jun-17	Jun-18	Staff time	Treatment Operations Manager, Netw ork Operations Managers, Team Leaders	Initial-Consolidating this role into a regional one through the trade waste coordinator. 2018-Completed. See #9
Bowen - Proserpine main	15	Main break	Water supply cut off / public health	High	Adhoc repair	Visual check of line and valves.	Full asset check of all line and valves, with asset list and mapping creation. Also preventative maintenance schedule created	June-16	Dec-17	\$40K	Planning & Assets Engineer	Initial-Line has been checked; Check valve being installed south of Whitsunday Shores (2/3 along main) 2018-Completed. Included in maintenance program.
Bowen - Proserpine main	16	Sediment scouring / slime slough	Aestheti cs / suspen ded solids / taste & odour	Medi um	Turbidity monitors; lines flushed	Pigging to be undertaken to remove sediment build up	Pigging stations to be constructed		Ongoing	\$8K	Planning & Assets Engineer	Initial-All stations done, worst section of line has been pigged. 2018-Completed. Included in maintenance program.
Storage Reservoirs	19	Pay out of under grade reservoirs.	Public health - Bacteria I, Viral and Protozo an contami nation	High	At-grade reservoirs have been isolated from system	Assessment of system storage to be completed to determine if atgrade reservoirs need to be on line. Additional sample points to be installed.	If reservoirs are required for satisfactory system operation, reconfiguration of valving to be carried out to ensure water	Dec-15	Jul-18	Staff time	Planning & Assets Engineer – Network Operations Managers COO.	Initial-Assessments complete. Bow en Res - w ork complete. Hydraulic modelling of Bow en Retic needs recalibration for other reservoirs. Brisk Bay Res - scheduled for 2017-18 2018-Completed. Brisk Bay Res off line until replacement scheduled for 2023-24
Security	23	Terrorism, sabotage	Chemic al / Biologic al	Medi um		Review of security at treatment plant sites to ensure access of unauthorised persons is adequately controlled	Preventative maintenance Schedule implemented in councils systems	Dec-15	Dec-17	Staff time	Treatment Operations Manager; Netw ork Operations Managers	Initial-Monthly Reservoir checks have commenced. Action plans will be developed out of these to rectify issues. Emergency Management Plan 2018-Completed
Security	24	Natural Disasters	Cyclone , Earthqu ake, Flooding etc.	High	Emergency Management Plan	Emergency Management Plan	Emergency Management Plan	Jun-16	Ongoing	Staff time	All Staff	Initial-Emergency Management Ran in effect. Developing a site based cyclone / w et-w eather procedure. 2018-Completed

